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Abstract
Many of the important mechanical properties of steel, including yield strength and hardness, the
ductile-brittle transition temperature and susceptibility to environmental embrittlement can be
improved by refining the grain size.  The improvement can often be quantified in a constitutive
relation that is an appropriate variant on the familiar Hall-Petch relation: the quantitative
improvement in properties varies with d-1/2, where d is the grain size.  Nonetheless, there is
considerable uncertainty regarding the detailed mechanism of the grain size effect, and appropriate
definition of “grain size”.  Each particular mechanism of strengthening and fracture suggests its
own appropriate definition of the “effective grain size”, and how it may be best controlled.

1.  Introduction

   The influence of grain size on the mechanical properties of steel is most commonly expressed in a
series of constitutive equations that have the Hall-Petch form.  Over the range of conventional grain
sizes, the values of typical mechanical properties increase with the reciprocal root of the grain size.
The classic Hall-Petch equation relates the yield strength to the grain size:

σy = σ0 + Kyd-1/2 (1)

where Ky is the Hall-Petch slope and d is the mean grain size.  An identical relation holds for the
indentation hardness.  A similar equation applies to the cleavage fracture stress (σf) of high-strength
steels,

σf = Kfd-1/2 (2)

and an equation of the Hall-Petch form is also often useful for predicting the ductile-brittle
transition temperature:

TB = T0 - KBd-1/2 (3)

The fatigue strength is often taken to vary with grain size in the same way.
   The wide applicability of the generic Hall- Petch relation makes it one of the most important
constitutive relations in Materials Science, and certainly the most common in mechanical
metallurgy.  However, its mechanistic origins and even its precise meaning remain imperfectly
understood.  For example, four distinct models have been advanced to justify eq. (1), each of which
has at least a couple of variations.  Three different models have been advanced to explain deviations
from Hall-Petch behavior at very small grain sizes.  The grain-size dependence of the cleavage
stress is a straightforward consequence of both the Griffith and Orowan fracture criteria, but the
Hall-Petch relation for the ductile-brittle transition presumes a linear connection between the
fracture stress and TB that is more difficult to justify.

Even given theoretical models that generate the Hall-Petch relation, there are ambiguities in its
content.  Particularly in martensitic steels, the meaning of the grain size is unclear.  In fact, different
measures of the grain size govern different processes; in some cases grain refinement techniques
that produce dramatic improvements in cleavage resistance have little or no effect on strength and
may actually reduce toughness after environmental embrittlement.   The use of the mean as the
measure of grain size is also difficult to justify, since yield and fracture ordinarily reflect the



behavior of "weakest links" in the microstructure that should be associated with extremes in the
distribution of grain size.
   In the following we discuss the models that predict Hall- Petch behavior and the ambiguities that
influence the choice of grain size, with emphasis on the strength and toughness of steel.

2.  The Influence of Grain Size on Strength

   There are at least four conceptually different models that lead to a Hall-Petch relation for the yield
strength.
   (1) The first, and most commonly cited, is the dislocation pile-up model [1].  Let an array of
identical dislocations pile up against a grain boundary under the effective shear stress, τe = (τ - τi),
where τ is the applied stress and τi is a local correction due to friction and back stresses.  It can be
easily shown that the stress at the head of the pile-up is

τp = nτe (4)

If the pile-up has length, L, the number of dislocations it contains is also determined by the
effective stress, and is

n = 
qπLτe

Gb          (5)

where G is the shear modulus and q is a geometric factor of order unity.  The length, L, cannot be
larger than the grain size, d, and is usually taken to be d/2.  Yielding is assumed to occur when the
stress at the tip of the pile-up, τp, reaches the critical value necessary to nucleate slip across the
grain boundary.  At this point,

τ = τy = τi + 



2Gbτc

qπ
1/2

   d-1/2 (6)

Eq. (6) takes the form (1) when τy is multiplied by the Taylor factor, m, to convert it to the tensile
yield strength, σy.
   (2) While the pile-up model is superficially plausible, it suffers from the disadvantage that well-
defined pile-ups are rarely observed, particularly in steels.  It is, therefore, important to note that the
Hall-Petch relation also follows from a more general model, based simply on the stress developed at
the tip of a slip plane across the grain [2].  A slipped plane acts very much like a shear crack, which
produces a crack-tip stress field of the form

τ (r) = (τ - τi)q(d/r)1/2 (7)

where r is the distance form the crack tip and q is a factor of order 1 that depends on the details of
slip.  Assuming yielding when the stress reaches a critical value, τc, at some distance, rc, ahead of
the boundary, we have the Hall-Petch equation in the form

τy = τi + (τcrc)d-1/2 (8)

   (3) A third interpretation is based on the correlation between grain size and dislocation density at
yield.  In the simple hardening models, the critical resolved shear stress to move a dislocation
through a distribution of dislocations varies with the dislocation density, ρ, as

τc = τi + αGb√ρ (9)

where α is a factor in the range 0.1-0.3 [3].  An increasing body of evidence suggests that this basic
hardening law  applies widely to the deformation of metals, including steels [3,,4], beginning from
the yield strength.  If this is true, and the Hall-Petch relation also holds at yield, the two must imply



one another, that is, the dislocation density at yield (ρy) must be determined by the reciprocal grain
size according to the relation

ρy = 





ky

αGb  
2




1

d          (10)

   Two different models have been suggested to justify behavior like that in eq. (10).  The first is an
older model due to Li [5] who suggested that the dislocation density within the grain might be
determined by sources located in the boundary.  If these are distributed with a constant mean areal
density, the number of dislocations within the grain (N) would be proportional to the grain
boundary area, cd2, where c is a constant that depends on the shape of the grain.  It follows that the
dislocation density is

ρ =  
N
V    = 

cd2

d3     = 
c
d       (11)

   More recent interpretations [6] have been based on the distribution of "geometrically necessary"
dislocations [7] that are required to assure compatible strain across grain boundaries.  The number
of geometrically necessary dislocations needed to accommodate a given misorientation across a
boundary is proportional to the area of the boundary.  Hence the expected number of geometrically
necessary dislocations within a grain of size, d, after a given strain should be proportional to the
grain boundary area, as in eq. (11), again giving a dislocation density that increases with the
reciprocal grain size.
   (4) A fourth, and unexpected source of Hall- Petch behavior is found in the statistics of the
microstructural resistance to dislocation glide.  The common bulk hardening mechanisms (solute
hardening, forest dislocation hardening, precipitation hardening) can often be modeled by a process
in which dislocations glide through a field of randomly distributed obstacles.  The basic hardening
law is an example; the dislocation density defines the obstacles to glide.  In a real case a dislocation
gliding through a grain has a finite length that is of the order of the grain size.  Both theoretical
analysis and computer simulation suggest that the stress required to force a dislocation across a
plane of width, d, that contains a distribution of barrier obstacles increases as d-1/2, just as in the
Hall-Petch relation.  The reason, in this case, is statistical.  As the width of the array decreases it
becomes easier to find configurations of obstacles that are anomalously strong in their resistance.
Computer simulation studies by Altintas [8,9] on the motion of single dislocations through square
arrays of fixed obstacles gives the result

τc = τ0 + 





KβGb

√ls 



1

√d        (12)

where T is the line tension of the dislocation, ls is the mean spacing between obstacles and Kβ is a
constant that depends on the obstacle strength.
   It should be noted that the models described here are not mutually exclusive.  They may apply
simultaneously, and contribute jointly to the Hall-Petch constant.  Furthermore, all models predict a
Hall-Petch slope that is proportional to the elastic modulus.  Takaki, et al. [10] have summarized the
data supporting this result for several metals.

3.  Application of the Hall-Petch relation for the strength

   The issues that need to be addressed in the application of the classic Hall- Petch relation include
the measure of grain size, the use of the mean grain size, and the possible breakdown of the
equation when grain size is refined to the nanoscale.



3.1 Selecting the grain size
   While the various models described above all lead to a Hall- Petch relation of the classic form,
they differ in the appropriate measure of grain size, particularly when the grains are irregular in
shape (as in martensitic steels).  The dislocation pile-up and the slip models are based on the length
of the active slip plane, and would hence use the measure of grain size that determines the mean
free path for slip.  In the case of irregular grain shapes this should be the mean length of the
dominant slip plane ({110} in Fe) in the long dimension of the grain.  The dislocation density
model relates strength to the grain boundary area per unit volume, and would appear to use a less
crystallographic measure of the effective grain diameter.  The statistical model would measure the
grain size as the width perpendicular to the direction of glide.
   In the case of martensitic steel the accepted measure of grain size is the size of the
crystallographically coherent block, which may be the packet size or block size, if the packet is
subdivided.  This grain size is difficult to measure with optical techniques, so the prior austenite
grain size is often used instead [11], on the usually reliable assumption that the crystallographic
coherence length is determined by the prior austenite grain size, if it is not equal to it.  Rapid
reversion [12] and rapid solidification [13] treatments have been used to break up the alignment of
laths in packets and create ultrafine-grained martensites.  In our experience, rapid reversion does
not have a dramatic effect on strength, possibly because the laths tend to retain shapes with {110}
planes aligned along the long axis.  However, rapid solidification was reported to lead to
exceptional hardness [13], with a Hall-Petch grain size roughly corresponding to the lath width.  It
is not clear why this should be the case.
   There are also ambiguities in the grain size of steels that have more equiaxed structures.  If
adjacent grains share (or nearly share) glide planes, they act as a larger unit, despite their apparent
independence in optical microscopy.  While the application of new technniques in orientation
imaging microscopy is making it possible to study orientation distributions and obtain a better
picture of the true grain size, very limited data are currently available for steel.

3.2 The mean grain size
   Since a material inevitably yields at its weakest element, it may seem inappropriate to use the
mean grain size as the constitutive variable in the Hall-Petch relation.  Some measure of the
maximum grain size, or the least favorable cluster of grains would, arguably, be more appropriate.
If, however, the set of samples that are used to test the Hall-Petch relation have microstructures that
are geometrically similar, in the sense that they have similar normalized distributions of grain sizes
and shapes, then the mean grain size is an appropriate measure.  Whatever grain size or grain
distribution actually controls the yield mechanism, for geometrically similar microstructures it
scales with the mean grain size.
   If the mean grain size is a scaling parameter rather than a direct, mechanistic variable then the
precise value of the Hall-Petch slope will change with the morphological characteristics of the
microstructure.  Materials with very different grain size distributions will obey slightly forms of the
Hall-Petch relation.  This issue has been investigated by Kurzydlowski and Bucki [14], who used
powder metallurgy to make aluminum samples with various grain size distributions, and by
Weertman and coworkers [15], who studied the behavior of ultrafine grained samples of Cu and Pd
as a function of processing.  Both sets of investigators found that samples with geometrically
different microstructures have significantly different responses to changes in the mean grain size.
As expected [14], For given values of the mean grain size, samples with relatively broad size
distributions, and, hence, relatively large populations of larger-than-average grains, were softer than
those with narrow grain size distributions at the same grain size.
   We know of no specific research on the sensitivity of the Hall-Petch slope to the geometric details
of the microstructure of steel.  However, the similarity in the Hall-Petch slopes obtained by
different investigators [10] suggests a fairly weak dependence for the microstructures that are
ordinarily encountered.

3.3  Deviations from Hall-Petch at fine grain size
   Whatever the mechanism that drives the Hall- Petch relation there should be a grain size so small
that it ceases to apply.  Research on a variety of materials [16], including steels [17], suggests that
this limit falls at about 20 nm mean grain size.  Refining the grain size beyond this point does not



ordinarily produce higher strength, and may even lead to an "inverse Hall-Petch" behavior in which
hardness decreases with finer grain size.
   At least three plausible hypotheses have been advanced to explain the small-grain limit of the
Hall-Petch relation.  First, it is commonly accepted that when the grain size becomes sufficiently
small the dominant deformation mechanism will change from transgranular slip to grain boundary
sliding, so the Hall-Petch relation no longer applies.  While we know of no direct experimental
evidence, this hypothesis is supported by recent computer simulations of deformation in ultrafine-
grained material [16,18].  However, it is not clear from these simulations that grain boundary
sliding could become dominant at grain sizes as large as 20 nm; a recent simulation for Cu suggests
a transition at 6-7 nm [18].
   Second, very small grains cannot support distributions of dislocations, so the pile-up and
dislocation density mechanisms for Hall-Petch behavior cease to apply.  Pertinent experimental
work has recently been published by Misra, et al. [19], who studied the hardness of thin, laminated
films, using transmission electron microscopy to monitor dislocation distributions.  They found
Hall-Petch behavior in several systems at grain sizes larger than about 20 nm, but significant
deviations at smaller sizes.  The change in behavior came at approximately the grain size at which
the maximum dislocation content in the grains dropped to 2 or less.  It should be noted, however,
that the geometry of their samples was not conducive to grain boundary sliding.
   Third, it is not easy to manufacture ultrafine-grained specimens, and there is a particular risk that
the samples that are compared to test the Hall-Petch relation may differ qualitatively in important
geometrical features of their microstructures.  If the Hall-Petch slope is microstructure-sensitive, as
it appears to be in at least some systems, then microstructural differences may produce deviations
from the Hall-Petch law.  Weertman and coworkers [15] present evidence that this is a source of
deviation from the Hall-Petch relation in ultrafine-grained Cu and Pd.

4.  The Influence of Grain Size on Fracture

   There are at least three distinct fracture modes that are important to the mechanical behavior of
steel: ductile fracture by the nucleation and growth of voids, and brittle fracture via transgranular
cleavage or intergranular separation.  It is not clear that there is a direct grain size effect on ductile
fracture, though there is certainly an indirect effect through the effect of grain size on strength.
Grain refinement does improve fracture toughness in the brittle intergranular mode.  However, I
know of no data establishing a constitutive equation of the Hall-Petch type.  On the other hand, a
Hall-Petch relation of the form of eq. (2) definitely does apply to the fracture via transgranular
cleavage.

4.1  Transgranular cleavage and the ductile-brittle transition
   In the usual case, transgranular cleavage fracture begins with the initiation of cleavage in a single
grain [20].  There is some plastic deformation prior to failure.  Initiation often occurs some distance
ahead of the crack tip, where the elastic-plastic stress field produces a maximal tensile stress, and at
a site of intense local stress concentration.  In ferritic or martensitic steel cleavage cracks propagate
on {100} planes, which terminate at the grain, packet or block boundaries.  If the stress at this point
is sufficient to drive the crack through adjacent grains, along {100} cleavage planes within them,
then the material fractures in a brittle, cleavage mode.  If the stress is insufficient the crack will be
stropped at the boundary, and will either be retained as an internal crack or blunted into a ductile
rupture void.  Since the peak stress at the crack tip increases with the reciprocal root of its size, and
the maximum size scales with d, the effective grain size, both the Griffith (energy) and Orowon
(stress) criteria suggest that the cleavage fracture stress increases with grain refinement according to
the Hall-Petch eq. (2).
   In practice, it is difficult to measure the cleavage fracture stress unambiguously.  The brittle
fracture parameter that is ordinarily measured is the ductile-brittle transition temperature, TB, and a
Hall-Petch relation of the form of eq. (3) has been used to describe its variation with grain size.  It is
important to recognize, however, that the relation between grain size and TB is indirect.  The
mechanism is illustrated in the Yoffee diagram in Fig. 1, where we associate the ductile-brittle
transition with the temperature at which the effective yield strength at the crack tip exceeds the
brittle fracture stress.
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Fig. 1: The Yoffee diagram, illustrating the source of the ductile-brittle tran-
sition.  σB is the critical stress for brittle fracture.

   Assuming that the brittle fracture mode below TB is transgranular cleavage, refining the grain size
raises the cleavage fracture stress.  This allows the material to have a higher yield strength, since the
peak tensile stress in the elastic-plastic field of a crack scales with the yield strength (finite-element
calculations suggest that it is 4-5 times sy for a high strength steel).  Some of the increment in
cleavage stress must be used to accommodate the higher strength of the fine-grained material.
However, for most steels of interest processing to fine grain size causes an increase in cleavage
stress that is much greater than the increase in strength, and TB decreases significantly [21].   If we
assume that the increase in the effective yield strength on decreasing temperature is approximately
linear, with slope (dσ/dT), then equations (1) and (2) can be combined to give eq. (3), with the Hall-
Petch coefficient,

KB = - 



dσ

dT
-1

(Kf - Ky)    (13)

Fig. 2: Increase in the ductile-brittle transition temperature with yield strength
on grain refining a variety of common steels [22].

   Interestingly, given eq. (1), the Hall-Petch relation for TB can be re-written

TB = T0 - 





KB

Ky
(σy - σ0)    (14)

which predicts that TB decreases linearly with the yield strength when grain refinement is the
strengthening mechanism.  Fig. 2, taken from a recent compilation of data at the Japanese National
Institute for Materials Science, shows how well this relation is obeyed for a variety of steels [22].
   Prior work in this laboratory [12,20] has shown how advanced heat treatments can be applied to
high strength lath martensitic steels to produce ultrafine grain size, and achieve exceptional
strength/toughness combinations at cryogenic temperatures.  To accomplish this one must recognize
that the effective grain size for cleavage fracture in lath martensitic steel is the coherence length
along the {100} cleavage plane, which ordinarily traverses martensites packets (or blocks, if the
packets are subdivided).  Grain refinement is accomplished by controlling the martensitic
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transformation to break up the crystallographic alignment between adjacent martensite laths,
interrupting the cleavage fracture path.  In this case, grain refinement does not ordinarily cause a
substantial increase in strength, probably because {110} planes lie along the long axis of the laths,
which are not significantly refined.

4.2  Hydrogen embrittlement
   A somewhat different mechanism applies when lath martensitic steel is embrittled by hydrogen,
as in hydrogen charging and in a common mechanism of stress corrosion cracking.  If the steel is
clean in its grain boundaries, the failure is transgranular, and high-resolution TEM studies have
shown that, at least in some typical lath martensitic steels, the mechanism is interlath separation
along the {110} lath boundaries [23].  Since the fracture plane is different from that in the cleavage
case, the meaning of grain size and the appropriate methods of grain refinement are different as
well.
   As a specific example, a common heat treatment to lower the ductile-brittle transition temperature
of lath martensitic steels is an intercritical temper that introduces thermally stable, precipitated
austenite phase along the lath boundaries.  The transformation of this austenite during fracture
breaks up alignment in the packet and lowers TB.  However, this same treatment increases
susceptibility to hydrogen embrittlement [24].  The transformation of interlath austenite imposes a
wedging load on the lath boundary that helps to split it, promoting early failure.

5.  Conclusions

    Grain refinement is an effective means for improving the strength and lowering the ductile-brittle
transition of structural alloys.  The improvement can often be expressed in an equation of the Hall-
Petch form.  However, the appropriate use of grain refinement requires an understanding of the
effective grain size that actually governs the mechanism of yielding or failure.
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